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SUMMARY 
Predictions for two-dimensional, steady, incompressible flows under both laminar and turbulent conditions 
are presented. The standard k-c turbulence model is used for the turbulent flows. The computational 
method is based on the approximate factorization technique. The coupled approach is used to link the 
equations of motion and the turbulence model equations. Mass conservation is enforced by either the 
pseudocompressibility method or the pressure correction method. Comparison of the two methods shows 
a superiority of the pressure correction method. Second- and fourth-order artificial dissipation terms are 
used in order to achieve good convergence and to handle the turbulence model equations efficiently. Several 
internal and external test cases are investigated, including attached and separated flows. 

KEY WORDS Navicr-Stokes equations Laminar flow Turbulent flow Pseudocompressibility method Pressure 
correction method Projection method Artificial dissipation 

1. INTRODUCTION 

Many of the fluid flows of practical interest, laminar or turbulent, have one or more recirculation 
zones, making precise numerical simulation difficult. Numerical models that are capable of 
accurately predicting such flows are desirable. 

Such numerical models consist of a mathematical model and a solution algorithm. The 
mathematical model comprises the set of differential equations that are solved, algebraic relations 
and boundary conditions, which include the mass and mean momentum equations, the 
turbulence model equations, etc. These equations contain approximations, so that the accuracy 
of the mathematical model has to be tested and verified by comparisons with experimental data 
or other reliable numerical results for a wide range of test cases. In addition, the solution 
algorithm, usually a finite volume, finite element or finite difference method, does not give an 
exact solution, but one involving mathematical inaccuracies. Therefore the final solutions contain 
errors from two different sources. 

Regarding the solution algorithm, the approximate factorization technique is used in the 
present study. This technique was initially developed for compressible flows' but has been 
successfully used for incompressible flows as well.2 Regarding the mathematical model, the 
handling of the mass equation is of most interest. Two alternatives are used. The first is the 
artificial compressibility method which links the pressure time derivative to the continuity 
equation. Upon adding the two momentum equations, the numerical algorithm leads to an 
implicit scheme in time with three equations. Secondly, a pressure correction method is developed 
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which uses a Poisson equation for the explicit pressure derivation, while the numerical algorithm 
involves only the momentum equations. A comparison of the above two approaches is one of 
the aims of the present work. 

Concerning the turbulence model, there are plenty of options. The standard k-E model with 
the wall function equations was selected because it is well tested and widely used, in spite of its 
disadvantages. In addition, small values of y ’ are not required, so coarse grids can be used near 
the walls and thus large time steps are possible and fast convergence is obtained. It is expected 
that this turbulence model will sometimes perform poorly, especially in the recirculation zones. 

Another factor that decreases the numerical accuracy is the artificial dissipation terms. These 
terms, which have to be as small as possible, are required to enhance stability and to remove 
the oscillations that occur when a central difference scheme is used. In our work a blended 
non-linear dissipation model is used for the first time in an incompressible algorithm, although 
it has been applied extensively in compressible algorithms. I t  was found to be reliable and stable. 

2. THE TURBULENCE MODEL EQUATIONS 

Turbulent flows have been successfully computed over a wide range of flow regimes with the 
Reynolds-averaged Navier-Stokes equations using the high-Reynolds-number form3 of the k--E 
model. This formulation requires the use of wall functions to bridge the viscous and boundary 
layers in proximity to the solid wall. This method, in which the influence of the molecular 
viscosity is not modelled, is strictly valid only for attached shear layers and may perform poorly 
in the recirculation zones. 

The non-dimensional equations of the standard k-E model are the kinetic energy (k) equation 

and the dissipation rate ( E )  equation 

a a E 
- + - +  . . + a  
at ax ay y aY Y k 

. = -  - (re&,) + - (r,Ey) + - (r,Ey) + C,  - G - Re C, 
as atcE auE VE 

where cx = 0 for the two-dimensional equations, IX = 1 for the axisymmetric equations, Re is the 
Reynolds number, c is the kinetic energy production term, 

and 

with veR and v ,  the effective and laminar kinematic viscosity respectively and v ,  the turbulent 
kinematic viscosity, 

k2 
v, = Re C, -. 

& 
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Finally, the constants are 

c, = 1.44, C ,  = 1.92, c, = 0.09, UL = 1.0, 0, = 1.3. 

The above model is valid under the hypothesis of homogeneous turbulence. It is necessary to 
avoid solving in the near-wall regions where steep variations and dissipation anisotropy occur. 
Thus the concept of wall functions has been employed. The central idea is that the flow in the 
region near the wall can be assumed to behave as a one-dimensional Couette flow. This is a 
reasonable assumption except for regions of high pressure gradient, separation or reattachment. 
Once this assumption is made, it is rather easy to arrive at  exact or semi-empirical, relation? 
which link the shear stresses and the other variables at the wall to the values of velocity, 
turbulence energy, etc. at the outer edge of the Couette layer where the first interior grid point 
is located. 

A one-dimensional Couette flow analysis yields, in the absence of a significant pressure 
gradient, the following linear or logarithmic laws for the distribution of the parallel-to-the-wall 
velocity ci', at the first grid point P from the wall: 

laminar sublayer: Up = u*y+  for y +  < 11.63, 

U* 
turbulent sublayer: Up = - In(Ey+) for y ' > 11.63, 

K 

where 

is the dimensionless distance of point P from the wall, 

is the friction velocity, T, is the wall shear stress, y is the normal distance from point P to the 
wall, K = 04187 is the Von Karman constant and E = 9.793 is a roughness parameter. 

From the above relations and according to the position of the first point P (laminar or 
turbulent sublayer), it is possible to calculate the shear stress rw. 

Finally, assuming that the shear stress is constant in the sublayer, the kinetic energy k,  and 
dissipation t p  at point P are found to be 

k P -  - C;1/Zu*2 (la) 

3. THE GOVERNING EQUATIONS 

3. I .  The artificial compressibiiitj method 

This approach is designed for steady incompressible flows. As long as the primitive variable 
formulation (pressure and velocity) is retained for incompressible flows, neither pressure nor 
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density appears in the continuity equation. with the result that this equation cannot be directly 
used to compute the pressure field. A pseudo-unsteady form of the continuity equation was 
proposed by Chorin.' 

where /I > 0 is the artificial compressibility parameter. 
The above equation can be utilized to compute the pressure field. However, since mass 

conservation is enforced only at the steady state, it is impossible to follow a physical time 
transient. Through several computational experiments, the most convenient value of the 
pseudocompressibility parameter /) was found to be unity and i t  is kept constant in the entire 
domain. 

Regarding the momentum equations, the full form 

is used. where k is the kinetic energy, which is taken into account only if a turbulent flow is 
going to be simulated. Finally, the stresses are 

3.2. The pressure correction method 

In this method the incompressibility condition is accounted for by the solution of a Poisson 
equation. Several projection methods have been developed for incompressible flows.5 The 
projection method is a fractional step method adapted to the unsteady Navier-Stokes equations. 
The basic principle of the method is that the evaluation of the time evolution is split into 
intermediate steps. First a tentative velocity field is calculated by the discretized momentum 
equations without the pressure gradient. A t  the second step a Poisson equation is solved and 
the pressure field is obtained. Finally, the velocity components at the new time level are evaluated 
by correcting the tentative velocity field using the pressure field. 

For the fractional step method described by Anderson and KristoRersen,6 the equations used 
are 
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where u* and v* are the components of the tentative velocity. To the first two of the above 
equations the time-marching scheme of Beam and Warming' is applied. The last two equations 
are combined to give the Poisson equation 

from which the pressure field is derived. 
Finally, the velocity field at the new time level is derived by the relations 

and mass conservation is satisfied. 

3.3. The transformed form of the equations 

(t, q, T) domain is performed. The non-dimensional form of the equations is written as' 
A generalized co-ordinate transformation from the physical (x y t )  to the computational 

(4) 

where Q is the vector of conservative variables, F, G and E are the convective fluxes, V ,  Wand 
C are the viscous terms and D is a vector that contains terms of the k-E equations. These fluxes 
are different for each of the two methods: for the pseudocompressibility method 

a,p + a, Fn + a,Gn + aE" = a, vn + a, wn + aCn + D", 

Q = J - ' [ p ,  U ,  U, k,  & I T ,  

F = J - ' [ p U ,  U U  + cx(; + i k ) ,  VU + iy( i  + $k) ,  k U ,  dJ]'. 

G = J - ' [ B V ,  U V  + qx($ + %k), UV + q y c  + $ k ) ,  kV,  .NIT, 

"I' k 
E 

0, 0, 0, v,G' - Re E, v,Cl  - G' - Re C2 - 
k 

and for the pressure correction method 

Q = J - ' [ u ,  v ,  k,  &IT,  
F = J ' [ u U  + $<,k, UU + f i y k ,  k U ,  &WIT, 

G = J - ' [ u V  + 3qxk ,  U V  + :qyk ,  kV,  E V ] ~ ,  

E = v(Jy)-'[u,  V,  k,  &IT ,  
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As can be seen, the flux C contains in addition the axisymmetric terms of the production term 
G, which now takes the form 

G' = " , u ,  + vxuJZ + 2(ty+ + v y q  + (txq + VX", + S Y U t  + vyU9)21.  

In the expressions above < and q are the curvilinear co-ordinates connected to the Cartesian 
co-ordinates x and y through the generalized co-ordinate transformation 

5 = a x ,  Y ,  l ) .  9 = w, Y ,  0. T = t ,  

and 

J = L v y  - <y% 

is the Jacobian of the transformation. Finally, Cr and Vare the contravariant velocities along 
the directions ( and q respectively, given by the relations 

C' = 5,  + t,u + t Y C ,  v = qt + VXU + q y v .  

4. NUMERICAL ALGORITHM AND METHOD OF APPLICATION 

4.1. The time-marching scheme 

For the solution of the system of equation (4) the implicit, factored, finite difference scheme 
of Beam and Warming' is used. The temporal derivative in (4) is approximated via a generalized 
time differencing as 

where AQ" = Q" + ' - Q" for the artificial compressibility method and AQ" = Q* - Q" for the 
pressure correction method. According to the choice of the values of 0 and 1; in (5) ,  a first- or 
second-order time-accurate scheme can be derived. In the present study, setting 0 = 1 and 1; = 0, 
the first-order Euler implicit scheme is used and first-order time accuracy is obtained. 

After substituting (4) into ( 5 )  and performing calculations, a non-linear expression results for 
the time increment of the vector of conservatives variables, AQ". In order to derive a linear 
algebraic system of equations, a linearization of viscous and inviscid fluxes must be performed. 
The inviscid fluxes, which are functions of Q. are linearized using Taylor series expansion as 

AF" = AnAQ" + 0(Ar2). AG* = BnAQn + O(A?), 
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A", B" = 

0 BZX P * Y  0 0 
a, z, + 2z,u + zyt' 3ax 

a, Q X V  a, + axu + 2ayu f a ,  0 
0 kZX kz, a, + z,u + zYc 0 

0 2 

0 0 a, + a,u + ayu 

C; = u(JRe y2) - '  0, 0, -2veII,  2v,u, 2v,C,  
k 

The vectors V? and W ;  are linearized implicitly using Taylor series expansion as 

AVY = (P" - R;)AQ" + a,(RAQ)" + O ( A T ~ ) ,  

AW;  = (Y" - Si)AQ" + d,(SAQ)" + O(Ar2), 

while the vectors V l  and W ;  are linearized explicitly as 

A V l  = A V l -  I + 0(Ar2) ,  AW! = AWT-' + O(Ar2). 

The Jacobian matrices for the pseudocompressibility method are 

where a = i for A" and a = 9 for B". 
The above linearization of the inviscid fluxes ensures the second-order time accuracy of the 

scheme. In order that this accuracy is retained in the corresponding linearization of the viscous 
fluxes, it must be taken into account that the latter are functions of all Q, Qs and Q,. Then the 
viscous fluxes V", W" and C" are first split into two parts, one of which is a function of Q and 
Qc and the other a function of Q and Qq: 
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1 
T " =  

0 0 0 

0 0  1 0 0  
o v u o o  
0 0 20 0 0 

y O O  k 0 0  
0 0  & 0 0  

0 0 

/ 
0 0 

i 

10 I 0 0 0 

where z = ( for R" and (-P + Re)" and LY = q for S" and ( -  Y + SJ". 
The fluxes C;, C;, and C; are linearized in the same way as the inviscid fluxes and the Jacobian 

matrices N :  = aC;/aQ", N ;  = aC;/ag" and N ;  = aC;/ag" for the artificial compressibility 
method are 

J ,  N y ,  N ;  = - 
JRe y 

2 

Y 
N; = 

0 0  0 0 0 

0 0  0 0 0 

"err 

Re 
0 0  -- 0 

0 0 0 c,c,u2 

where a = 5 for N; and a = q for N;. 

and H" = dD"/dQ" obtained for the artificial compressibility method are 
The same linearization is used for the fluxes E" and D" and the Jacobian matrices T" = dE"//aQ" 

0 0 0  0 0 

0 0 0  0 0 
10 0 0 0 0 

EL & 

kZ k 
-2c2 - 10 0 0 C,C,G'+ C 
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where the production term G' is considered to be constant. For the pressure correction method 
the Jacobian matrices are derived from the corresponding matrices of the pseudocompressibility 
method by deleting the first line and the first column. 

Substitution of the linear expressions for the flux vectors into the original non-linear equation 
for AQ" leads to a strongly coupled system of equations in both spatial directions. This coupled 
system is solved by the approximate factorization technique' in two sweeps, 5 and q. which in 
the present case are 

( I  + ::'[ [ d A A  - P + R,) - ass R - aN (64  

[d,(B - Y + S,)  - a,,S - r ( N 2  + N ,  - T )  + @,HI" .AQ" = A@, (6b) 

where 

ptl  = Q" + JAQ" or Q* = Q" + JAQ" ( 6c) 

for the pseudocompressibility or the pressure correction method respectively, 

RHS = 
AT 8A7 

I + (  I + [  
[ ? : ( - F  + V)" + 2,(-G + W)" + r(C - E)" + D"] + - (2,AV;-'  + ?,,AW;-*) 

(7) + -L AU"-' + D, + O[(O - 4 - [)AT' + 
1 + 5  

= JQ is the vector of conservative variables in the physical domain, D, represents the artificial 
dissipation terms and 0, and Ob are weighting functions' used to add the Jacobian matrix H 
in both sweeps. Although in the present study this was found to have no effect on the final 
results, these expressions allow us to introduce H in the sweep where the largest gradients occur 
and are given by the relations 

It should be noticed that when the pseudocompressibility method is used, equation (6c) 
provides the conservative values of the physical field. In contrast, when the pressure correction 
method is used, this equation provides the values of the tentative field and equations (2) and (3) 
must be used to provide the physical field. 

4.2. The urt8cial compressibility terms 

The spatial derivatives in the above system of equations are approximated by central 
second-order derivatives. Thus the solution of the system of equations (6) requires the inversion 
of two block-tridiagonal systems, one in each direction. On the other hand, the use of central 
differences leads to the necessity of adding external artificial dissipation terms, so that the stability 
is retained and oscillations from the solution are removed. I n  the present work only explicit 
terms D, are used in (7). 

The following fourth-order dissipation terms were used initially, 

D, = - ~ , A T J - ' [ ( A ~ V ~ ) ~ ( J Q )  + (A,V,)Z(JQ)l, 
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where Re is a user-defined constant. I t  was found that these terms were insufficient to handle 
the k--E equations properly and to remove thc negative values that occurred near the solid 
boundaries. Thus the blended second- and fourth-order non-linear model, first introduced by 
Jameson er uL9 and slightly altered by Pulliam'" and other researchers," was used for the first 
time in incompressible flows: 

In the expression above V,, V, and A,, A, are the backward and forward difference operators 
respectively given by the relations 

with corresponding expressions for the q-direction, and dS) and d,) are non-linear scaling 
coefficients intended to scale all the dissipation terms by the local eigenvalues of the solution. 
Two types of these coefficients were used, 

and 

but no significant differences occurred. In the equations above A5 and A" are the largest 
eigenvalues of the Jacobian matrices A and B respectively. 

For the pseudocompressibility method the eigenvalues are 

(84  

and for the pressure correction method 

(8b) 

The coefficients e('' and e(,) are used to switch from fourth- to second-order damping in 
regions with large pressure gradients, avoiding the appearance of oscillations, or large dissipation 
gradients, avoiding the appearance of negative k--c values : 

where k ,  and k, are constants and v is a dissipation sensor used to identify the presence of large 
pressure gradients for the momentum equations, 

or large dissipation gradients' ' for the k--E equations, 

The constants that appear in the expressions above are held at the constant values 
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Via numerical experiments it was found that the best results were obtained with the following 
values of the constants for the k-E equations: 

k, = 015, k ,  = 001. 

It should be mentioned that in the pressure correction method no artificial dissipation terms 
are used for the solution of the Poisson equation. 

4.3. The solution of the Poisson equation 

According to the coordinate transformation described above, the Poisson equation (2) takes 
the conservative form 

where 

(u*Y, )~  + ( -u*yF) , ,  + (-o*x,,)~ + (u*x<), + z + ( - p " + l x J , , ] .  

Applying the explicit iterative method to solve (9), we obtain 

where the superscript k denotes the index of internal iteration. 
I t  was found that this method is much faster than the classical point Gauss-Seidel technique. 

At each time step 100 Poisson equation iterations are done unless a specified convergence 
criterion is reached. After several time steps this criterion is reached in a few iterations and mass 
conservation is satisfied. The boundary conditions for the pressure are applied at each internal 
iteration. while the tentative velocity field remains constant in the entire domain. 

4.4.  The definition of the time step 

Although the solution method is implicit, the actual stability of the scheme is not independent 
of the time step used. The time step in the present work is computed by the well-known local 
time-stepping technique for steady state problems, which takes into account the variation 
in the flow in combination with the variation in the grid spacing: 

where  AT,,^ is the initially user-defined reference time step, which for the present work is equal 
to unity, and iC and A" are given by (8a) or (8b) depending on which method is used. 
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U 

I 

5 .  BOUNDARY CONDITIONS 

Throughout the computations, explicit boundary conditions are used. On the inlet boundary 
the velocity profiles are specified, the pressure second derivative is set equal to zero and the 
kinetic energy kin and dissipation cin are given by the empirical relations 

I 

Cpk/ i5  
0.03Din ’ 

E .  =-- kin = 0*003uf,,, in 

> 

7 

where urcf is the reference velocity and Din is the inlet diameter. 
On the outlet boundary all variables are calculated by extrapolation from the interior, while 

the pressure is set to its reference value. At the symmetry axis the first derivatives of all variables 
are set equal to zero, except the u-component of the velocity which is set equal to zero. On the 
far-field boundary of the aerofoil case the velocities are specified by the relations uin = uref cos a 
and ljin = urcf sin a, where z is the angle of attack, and the pressure first derivative is set equal 
to zero. On the outflow boundary first derivatives equal to zero are applied to all variables, 
except to the pressure which takes its reference value. On the wake cut points the conservative 
variables are defined by averaging their values from both sides of the wake. 

On the solid surface the non-slip condition is applied for the velocity components. The kinetic 
energy and dissipation are defined at the first grid point above the solid surface by use of the 
wall functions (1). The pressure is derived from the assumption of a zero normal pressure gradient, 
which is obtained by the momentum equations and demands the solution of a tridiagonal system 
at each time step. 

w 2  
I 1 

I I I I I I 

6. RESULTS AND VALIDATION 

6.1. Lominar flow over a backwardgacing step 

The steady, viscous, incompressible, isothermal, laminar flow over a two-dimensional 
backward-facing step is the first test case selected to test our algorithm. The test case 
characteristics are given by Gartling.13 The downstream part of the channel was defined to 
have unit height H, with the step height and the upstream inlet region both set equal to H / 2 .  
The downstream channel length was taken to be L = 30H, i.e. the channel extends 60 step 
heights from the inlet (Figure 1). Two grids, 99 x 41 and 155 x 51, were used to simulate 

‘1 
I 

X AXIS 
Figure 1.  Backward-facing step geometry with channel dimensionsRe = 800 
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Figure 2. General view of 155 x 51  grid-Re = 800 

the flow. In Figure 2 the denser grid is shown. Each of the two methods was tested on both 
grids. 

The boundary conditions applied are those described in the previous section. The inlet 
velocity field was specified as a parallel flow with a parabolic horizontal c ~ m p o n e n t ' ~  given by 
u(y) = 24310.5 - y )  for 0 < y I 0.5 (Figure 1). This produces a maximum velocity u,,, = 1.5 and 
an average inflow reference velocity urer = 1.0. After a solution had been obtained, the pressure 
field was adjusted such that the pressure level was zero at the step corner (x = 0, y = 0). The 
Reynolds number is defined by Re = urerH/v and for the present case is equal to 800. 

In Figure 3 the streamfunction contours are presented, which were found to be almost identical 
for all combinations of methods and grids. This figure shows that two recirculation regions exist, 
one on the lower wall and another on the upper wall. 

In Figures 4 and 5 the pressure profiles along the lower and upper walls respectively are 
presented. In Figure 6 the pressure profiles at x / H  = 7 and 15 are shown. The conclusion is that 
both methods are in good agreement with Gartling's results, with the pressure correction 
method having a slight superiority. The same conclusion is deduced from Figures 7 and 8, where 
the velocity profiles at x / H  = 7 and 15 are presented. 

In Table I the recirculation regions yielded by the current methods are compared with those 
given by Gartling. As can be seen, the predicted separation and reattachment points are in very 
good agreement with the numerical results of Gartling. It should be mentioned that the pressure 
correction method gives results that are closer to the other numerical results in comparison with 
those obtained from the pseudocompressibility method. In addition, grid refinement plays a 
dominant role in the prediction of the recirculation zones, although it has negligible influence 
on the pressure and velocity profiles. On the other hand, it is clear that the results are not 
affected when fourth-order dissipation terms are used instead of blended second- and fourth- 
order dissipation terms. 

In the same table it is seen that the pressure correction method needs many more iterations 
to converge than the pseudocompressibility method. One reason for this is that the Poisson 

Figure 3. Streamfunction contours for I55 x 51 grid; the level values are' -0030, -0025, -0020, - 0 0 1 5 ,  -0010. 
-0-005,0.000, 0050. 0100. @150,0200,@250,0.300,@350. 0,400, @450, 0490, 0500, @502,@504--Re- = 800 
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0 0 0 0 0 Gartling's method 
Pseudocompressibility method, grid 155x51 

- -  Pressure correction method, grid 155x51 

0.05 

:o: 0.00 0.0 10.0 20.0 30.0 

x/H 
Figure 4. Pressure profiles along lower wall backward-facing step, Re = 800 

0 0 0 0 0 Gartling's method 
Pseudocompressibility method, grid 155x5 1 

_ _  Pressure correction method, grid 155x51 

x/H 
Figure 5. Pressure profiles along upper wall-backward-facing step, Re = 800 
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0 0 0 0 0 Gartling's method 
-- Pseudocompressibility method, grid 99x41 

_ -  Pseudocompressibility method, grid 155x51 
- _ -  Pressure correction method, grid 99x41 
-..__- Pressure correction method, grid 155x51 

0.50 - 
- 
- 

0.25 - - 
- 
- 

I 
\ 0.00 - 
>\ - 

1027 

r 
\ x 

pressure 
Figure 6. Pressure profiles across channel at x / H  = 7 and 15-backward-facing step, Re = 800 

-0.25 

-0.50 
- 

],,rr,, x/H=7 

.0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 

U / U r e f  

Figure 7. Velocity profiles at x / H  = 7-backward-facing step, Re = 800 
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0 0 0 0 0 Gartling's method 
Pseudocompressibility method, grid 155x5 1 

_ _  Pressure correction method, grid 155x51 

0.25 

r 
\ 0.00 
x 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 
u /u , , f  

Figure 8. Velocity profiles at x / H  = I5 - backward-facing step, Re = 800 

equation is solved without the use of any artificial dissipation terms. In Figure 9 the convergence 
history is shown for all the conservative variables. 

6.2. Turbulent flow over an NACA 0012 aerofoil 

The first turbulent case under consideration is the external flow over an NACA 0012 
aer0foi1.l~ The Reynolds number, based on the chord length c and freestream velocity uinf ,  is 
2.8 x lo6 and the angle of attack is a = 0". 

Three grids, 99 x 77, 157 x 77 and 89 x 51, were used for the current case. The numbers of 
points distributed on the aerofoil surface are 67, 107 and 59 and in the wake 16, 25 and 15 
respectively. The front boundary was placed 11 chords in front of the aerofoil, the top and 
bottom boundaries 12 chords away and the rear boundary 8 chords behind. in Figure 10 the 
99 x 77 grid is shown. 

In Figure 11 the surface pressure distribution is plotted and compared with the experimental 
data of Gregory and 0ReillyL5 and the computational results of Shamroth and Gibeling.16 
The results obtained by the two methods are better than the other computational results. In 
addition, the pressure correction method shows better behaviour at the trailing edge than the 
pseudocompressibility method. 

6.3. Turbulent flow ouer a 45" axisymmetric diffuser 

The turbulent flow in a 45" axisymmetric diffuser is investigated. The Reynolds number, 
based on the inlet section height H and mean velocity u,ef, is 2 x lo5. The step's origin is at 
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- Pseudocompressibility method, grid 99x41 
_ _  Pseudocompressibility method, grid 155x51 
_ - -  Pressure correction method, gfld 99x41 
....-- Pressure correction method, grid 155x51 

0 6000 12000 
Time steps 

L 

x 

0 
0) > 
I 10 

c. '0 10 

- 

> 

Time steps 

Figure 9. Convergence histories for all conservative variables backward-facing step, Re = 800 

Figure 10. General view of 99 x 77 grid used for NACA 0012 aerofoil test case -Re = 2.8 x lo6, z = 0" 
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Figure 11. Surface pressure distributions for NACA 0012 aerofoil-Re = 2.8 x lo6, z = 0" 

Figure 12. General view of 155 x 55  grid used for 45" axisymmetric diKuser 

x / H  = 2 and its end at x / H  = 3. The upper boundary is a symmetry axis. Two grids, 99 x 37 
and 155 x 55, were used. The exit is located 40 step heights from the inlet for the coarse grid 
and 55 step heights from the inlet for the dense grid. In Figure 12 the 155 x 55 grid is presented. 

In Table I1  the recirculation regions provided by the two methods are presented and compared 
with the experimental data of Chaturvedi" and other numerical results of Michelassi and 

Table 11. Comparison of predicted recirculation lengths for turbulent flow over a 45" axisymmetric 
diffuser 

Method 
Separation Reattachment Recirculation 

Grid xlH xlH length 
~ _ _ _ _  

Experiment l 7  9.00H 
Pseudocompressibility 99 x 37 205 11-41 9.36H 
Pressure correction 99 x 37 206 1 1.84 9.78H 
Pseudocompressibility 155 x 55 2.04 12.67 1063H 
Pressure correction 155 x 55 2.04 12.27 10.23H 

1.15H 
8-40H 

Michelassi and Benocci' (CH) 80 x 45 (2D) 
Michelassi and Benocci" (TL) 80 x 45 (2D) 
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~ 0 0 0 0  Choturvedi (exp) 
- Pseudocompressibility method, grid 155x55 

..__.. Michelossi ( n u 7 )  
_ _  Pressure correction method, grid 155x55 

Benocci.' As can be seen in this table, both methods overestimate the recirculation zone. It 
should be mentioned that Michelassi and Benocci considered the diffuser to be two-dimensional 
and used the low-Reynolds-number Chiens (CH) k-e model and the low-Reynolds-number Rodi 
two-layer (TL) k-e model. Thus it is reasonable to expect improved results near the wall 
compared with the standard turbulence model. 

In Figure 13 the velocity profiles at several positions are compared with the experimental 
data of Chaturvedi and the numerical profiles of Michelassi and Benocci. The comparison shows 
that all the methods and turbulence models are in good agreement with the experimental data. 

In Figure 14 the kinetic energy profiles are plotted for the two methods. It is obvious that 
the axisymmetric equations provide better results than the two-dimensional equations of 
Michelassi and Benocci. The largest discrepancies occur near the symmetry axis and get worse 

0 0 0 0 0 Chaturvedi (exp) 
- Pseudocompressibility method, grid 155x55 _ _  Pressure correction method, gric 155x55 
..____ Michelossi (ndm) 

Figure 14. Kinetic energy profiles for 45" axisymmetric diffuser Re = 2 x 10' 
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as the exit is approached. The inadequate mesh refinement in these regions may be the main 
reason for the poor prediction of these profiles. 

6.4. Turbulent flow over a backward-facing step 

The last case investigated in the present study is the turbulent flow over a backward-facing 
step. Comparisons have been made with the experimental data of Kim’* and the numerical 
results of Hackman et aI.l9 The definition of the test case geometry is given in Figure 15. Selecting 
urer = 0, LlCr = h and v = p/p, the Reynolds number becomes 69,610. In this case two grids were 
used, 115 x 40 and 155 x 55. In Figure 16 the 155 x 55 grid in the region around the step is 
shown. 

In Table 111 a comparison of the recirculation lengths is presented. The resent results are in 
very good agreement with the experimental data, especially those provided by the pressure 
correction method. The underestimate of the recirculation length in comparison with Kim’s 
data is a well-known property of the k--E turbulence model used. 

Figure 17 shows the predicted pressure recovery along the lower wall of the step, starting at 
the root of the step, in comparison with Kim’s data and other numerical results by Hackman 
et ul. and Kwon and Pletcher.” The best behaviour is obtained by the pressure correction 
method. 

PARAMETERS FOR 
KIM’S PROBLEU 

AVERAGE INFLOW 

////I”/- 

n = ~ t 6 2  II) 

h 0.0311 m 

-+lJ I LI- 0.1524 m 

I 
I 

I 

- + La. 2 . 3 3 8 8 m  

I P i . n e 5 ~ ~  ~ p i m ’  

p 9 1.836Sll I K)-’Lg/ms 

h ii i7.n m/s 

1- 

Figure 15. Definition of flow over backward-facing step 

3 00 

2.00 
I 
2 

1 00 

0 00 
0.00 2.00 4.00 6.00 8 00 10.00 12 00 

x/H 
Figure 16. Detail of 155 x 55 grid in region of backward-facing step 
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Table 111. Comparison of predicted recirculation lengths and numbers of iterations to achieve convergence 
for turbulent flow over a backward-facing step 

Separation Reattachment Recirculation No. of iterations 
Method Grid x lh xlh length to 1 x 10-4 

ExperimentL8 7.00h f O.5h 
Pseudocompressibility 1 15 x 40 5.00 11.15 6.15h 2829 
Pressure correction 115 x 40 5.00 1 1.57 6.57h 6554 
Pseudocompressibility 155 x 55 5.00 11.40 6.40h 4366 
Pressure correction 155 x 55 5.00 11.71 6.71h 9682 
Hackman et 0 1 . ' ~  48 x 48 5.2h < x < 6.9h 

method. 
method. 

DOODD Kim (exp) 

0.2 

-0.0 

mathod. 
mathod. 

grid 115x40 
grid 155x55 

o o o o o  Kim - Pscu c lily mathod. grid _ _  P-. COR. method. grid 
_ - _  Hockmar et 01 (num) o.6 ..___ ~ Kwon & Pletchar 

155x55 
155x55 

-0.2 -, -0.2 1, -0.2 
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 

x/H x / H  x/H 

Figure 17. Predicted and measured pressure recovery cp - c,,~ = (p - p,,,im)/(pu,c,/2) downstream of backward-facing 
step -Re = 69.610 

~~~~~ Kim exp) - Pseu6ocompressibility method, grid 155x55 _ -  Pressure correction method, grid 155x55 
__..__ Hockman et al (num) 

3.00 

2.50 

2.00 

I 2 1.50 

1 .oo 

0.50 

0.00 
-0.5 0.0 0.5 1.0 1.5 

(4 U / U d  

3.00 

1 .oo 

0.50 

0.00 
-0.5 

x/H==7.67 7, 
0.0 0.5 1.0 1.5 

3.00 2.50 I,r,, 
2.00 

1.50 

1 .oo 

0.50 

x/H= 10.33 

.4 
.,2 

,d 

00 

0.00 a 
-0.5 0.0 0.5 1.0 

U / U d  U/U,#f 

velocity profiles-backward-facing step, Re = 69,610 

rn 
1.5 

Figure 18(a). Mean 
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3.00 1 

2.50 - 

2.00 - 

1.50 - 

1.00 - 

~0~~~ Kim exp) 
- Pseujocompressibility method, grid 155x55 _ _  Pressure correction method, grid 155x55 
.....- Hockmon et 01 (num) 

0.00 0.50 -0.5 l 
0.0 0.5 1.0 

srrl 
1.5 

0.00 
-0.5 

x/H=13.00 \I ] 
,,) , , , , , ,  

0.0 0.5 1.0 1.5 

Figure 18(b). Mean velocity profilesbackward-facing step, Re = 69,610 

In Figures 18(a) and 18(b) the mean velocity profiles are presented at six positions. Good 
agreement with the experimental results is obtained and slight differences compared with 
Hackman et d . ' s  results. In Figures 19(a) and 19(b) the kinetic energy profiles are shown. The 
comparison shows an adequate behaviour for both the two present methods and the other 
numerical results. Again the pressure correction method seems to have a slight superiority, 
Finally, in Figures 2qa) and 2qb) the convergence histories are presented for all the conservative 
variables. From these figures and Table 111 it is clear that the number of iterations the pressure 
correction method needs to converge is about twice the number of iterations of the pseudocom- 
pressibility method. 

0 0 0 0 ~  Kim exp) 
~ Pseu6ocompreraibility method. grid 155x55 _ _  Pressure correction method, grid 155x55 

Hockrnon et al (nurn) _..___ 

I - # - # , -  
0.00 0.01 0.02p.03 0.04 0.05 0.00 0.01 0.02p.03 0.04 0.05 0.00 0.01 0.02p.03 0.04 0.05 

(a) k/u ,d  V u r d  k /ud 

Figure Iqa). Kinetic energy profiles-backward-facing step, Re = 69,610 
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~ 0 0 0 0  Kim fxp) - Pseu ocompressibility method, grid 155x55 

..____ Hockmon et 0 1  (num)  
_ -  Pressure correction method, grid 155x55 

3.00 

2.50 i/' 
2.00 

3.00 

2.50 2 .oo i.' 
1 .oo 1 .00 

0.50 

0.00 0.00 o.oo 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 9.03 0.04 0.05 

3.00 

2.00 

0.50 

0.00 0.01 0.02 f.03 0.04 0.05 
k/U,,, 

Figure 19(b). Kinetic energy profiles backward-facing step, Re = 69,610 

- Pseudocompressibility method, grid 1 15x40 _ _  Pseudocompressibility method, grid 155x55 _ _ _  Pressure correction method, grid 115x40 
____.. Pressure correction method, grid 155x55 

Figure 2qa). Convergence histories for pressure and velocities-backward-facing step 

- PIeudocompressibility method, grid 1 15x40 - _  Pseudocompressibility method, grid 155x55 - - _  Pressure correction method, grid 115x40 _ _ _ _ _ _  Pressure correction method, grid 155x55 

Lo - 
0 
3 
-0 10 .- 
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x 
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rn - 

.- 

Time steps 
Figure 2qb). Convergence histories for kinetic energy and dissipation rate-backward-facing step 
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7. CONCLUSIONS 

Two different approaches for pressure calculation and mass conservation, the artificial compress- 
ibility method and the pressure correction method, were compared in the present paper with 
the help of the approximate factorization technique. Several laminar and turbulent cases were 
used for this purpose. The standard high-Reynolds-number turbulence model was used for the 
turbulent flows, The comparison shows a slight superiority of the results obtained by the pressure 
correction method. On the other hand, the pseudocompressibility method has the advantage of 
much faster convergence. The use of blended second- and fourth-order artificial dissipation terms 
leads to excellent handling of the turbulence model equations and fast convergence of these 
equations is obtained. 

The results in general are in very good agreement with the experimental data and in many cases 
are better than the corresponding numerical results of other researchers. The turbulence model 
could be the main reason for the discrepancies that occurred. Finally, it is noteworthy that in 
the axisymmetric diffuser case the recirculation region was overestimated, in contrast with the 
expected underestimate of this region which is the well-known behaviour of the k--E turbulence 
model. 
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